$C_4$-Extensions of $S_n$ as Galois Groups.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois Groups of Maximal ̂ -extensions

Let p be an odd prime and F a field of characteristic different from p containing a primitive p\h root of unity. Assume that the Galois group G of the maximal p-extension of F has a finite normal series with abelian factor groups. Then the commutator subgroup of G is abelian. Moreover, G has a normal abelian subgroup with pro-cyclic factor group. If, in addition, F contains a primitive p2th roo...

متن کامل

Galois Groups of Radical Extensions

Theorem 1.1 (Kummer theory). Let m ∈ Z>0, and suppose that the subgroup μm(K) = {ζ ∈ K∗ : ζ = 1} of K∗ has order m. Write K∗1/m for the subgroup {x ∈ K̄∗ : x ∈ K∗} of K̄∗. Then K(K∗1/m) is the maximal abelian extension of exponent dividing m of K inside K̄, and there is an isomorphism Gal(K(K∗1/m)/K) ∼ −→ Hom(K∗, μm(K)) that sends σ to the map sending α to σ(β)/β, where β ∈ K∗1/m satisfies β = α.

متن کامل

Galois Groups as Permutation Groups

Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn). Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation ...

متن کامل

Galois as Permutation Groups

Writing f(X) = (X− r1) · · · (X− rn), the splitting field of f(X) over K is K(r1, . . . , rn). Each σ in the Galois group of f(X) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation of th...

متن کامل

THE ABSOLUTE GALOIS GROUPS OF FINITE EXTENSIONS OF R(t)∗

Let R be a real closed field and L be a finite extension of R(t). We prove that Gal(L) ∼= Gal(R(t)) if L is formally real and Gal(L) is the free profinite group of rank card(R) if L is not formally real. MR Classification: 12E30 Directory: \Jarden\Diary\RealFree 3 April, 2007 * Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1995

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12537